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Abstract
Current management of chronic kidney disease (CKD) in type 1 diabetes centres on glycaemic control, renin–angio-
tensin system inhibition and optimisation of risk factors including blood pressure, lipids and body weight. While these 
therapeutic approaches have significantly improved outcomes among people with type 1 diabetes and CKD, this popu-
lation remains at substantial elevated risk for adverse kidney and cardiovascular events, with limited improvements 
over the last few decades. The significant burden of CKD and CVD in type 1 diabetes populations highlights the need 
to identify novel therapies with the potential for heart and kidney protection. Over the last decade, sodium–glucose 
cotransporter-2 inhibitors, glucagon-like peptide 1 receptor agonists and non-steroidal mineralocorticoid receptor 
antagonists have emerged as potent kidney-protective and/or cardioprotective agents in type 2 diabetes. The consistent, 
substantial kidney and cardiovascular benefits of these agents has led to their incorporation into professional guide-
lines as foundational care for type 2 diabetes. Furthermore, introduction of these agents into clinical practice has been 
accompanied by a shift in the focus of diabetes care from a ‘glucose-centric’ to a ‘cardiorenal risk-centric’ approach. 
In this review, we evaluate the potential translation of novel type 2 diabetes therapeutics to individuals with type 1 
diabetes with the lens of preventing the development and progression of CKD.
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ERA  Endothelin receptor antagonist
ESKD  End-stage kidney disease
GIP  Glucose-dependent insulinotropic polypeptide
GLP1  Glucagon-like peptide 1
GLP1-RA  Glucagon-like peptide 1 receptor agonist
HF  Heart failure
hsCRP  High-sensitivity C-reactive protein
MACE  Major adverse cardiovascular events
MRA  Mineralocorticoid receptor antagonist
NO  Nitric oxide
RAS  Renin–angiotensin system
sGC  Soluble guanylate cyclase
SGLT2i  Sodium–glucose cotransporter-2 inhibitor(s)
UACR   Urine albumin to creatinine ratio

Burden of chronic kidney disease in type 1 
diabetes: an unmet clinical need

Similar to type 2 diabetes, hyperglycaemia in type 1 diabetes 
increases the risk of end-organ damage, including chronic 
kidney disease (CKD). CKD can be classified and prognos-
ticated using eGFR and albuminuria (quantified using the 
urine albumin to creatinine ratio [UACR]) [1]. The relative 
risks of complications, including progression of CKD to 
end-stage kidney disease (ESKD), CVD and mortality, are 
increased with both reduced eGFR and elevated UACR lev-
els [1]. The prevalence of CKD in type 1 diabetes increases 
with diabetes duration, with approximately 33% and 25% of 
adults developing albuminuria and eGFR <60 ml/min per 
1.73  m2, respectively, after >40 years of diabetes; overall, 
the lifetime risk of ESKD is 10–30% [2, 3]. Notably, there 
was a decrease in the cumulative incidence of severe albu-
minuria in individuals diagnosed with type 1 diabetes in 
the 1980s compared with those diagnosed in the 1970s in 
Finland, although no further improvement was apparent in 
the 1990–1999 diagnosis cohort [4]. This study also showed 
that, from the onset of recurrent albuminuria screening in 
1980 until 2020, the cumulative incidence of moderate 
albuminuria had shown no signs of decrease. The decrease 
between the 1970s and the 1980s coincided with the emer-
gence of renin–angiotensin system (RAS) blockers, but the 
conspicuous lack of further improvements after the 1980s 
highlights the need for additional kidney-protective medica-
tions [4]. In a similar analysis of the Swedish National Dia-
betes Register, a decreasing trend in standardised incidence 
rates of diabetic nephropathy in people with type 1 diabetes 
was observed from 2001 to 2019, with no changes in the 
rates of ESKD over the same period [5]. Additionally, CVD 
remains a leading cause of morbidity and mortality in type 
1 diabetes. Compared with matched controls, individuals 
diagnosed with type 1 diabetes between 0 and 10 years of 
age have a nearly 30 times increased risk of coronary heart 

disease, with greater than seven times the risk of cardiovas-
cular death [6].

While the prevalence of CVD is similar in individuals 
with type 1 diabetes and those with type 2 diabetes, the 
risk of CKD may be greater in those with type 1 diabetes. 
Following age stratification, the risk of CKD was 1.4- to 
3.0-fold higher in individuals with type 1 diabetes at all 
ages than in those with type 2 diabetes [7]. Additionally, 
in Scandinavian cohort studies, event rates of heart failure 
(HF), stroke, incident CKD and ‘cardiorenal’-related death 
were higher in type 1 diabetes than in type 2 diabetes [7]. 
Consistent with these results, age-, sex- and socioeconomic 
status-adjusted data from national Scottish registries demon-
strated that incident HF hospitalisations were higher among 
those with type 1 diabetes than those with type 2 diabetes 
[8]. Importantly, underuse of therapies directed at heart and 
kidney protection was noted in individuals with type 1 dia-
betes compared with those with type 2 diabetes in the Scan-
dinavian cohort [7]. Fewer people with type 1 diabetes than 
type 2 diabetes were on CVD medication (53.9% vs 82.1%), 
ACE inhibitors (22.5% vs 32.0%) and angiotensin receptor 
blockers (ARB) (16.7% vs 31.3%).

The significant burden of CKD and CVD in type 1 diabe-
tes highlights the need to identify novel therapies with the 
potential for heart and kidney protection. Although signifi-
cant therapeutic advances have been made for people living 
with type 2 diabetes, similar benefits have yet to be achieved 
in those with type 1 diabetes. In this review, we evaluate the 
potential translation of novel type 2 diabetes therapeutics to 
individuals with type 1 diabetes with the lens of preventing 
the development and progression of CKD.

Mechanistic underpinnings of CKD 
in diabetes

The development and progression of CKD in diabetes is 
driven by metabolic and haemodynamic factors, which con-
tribute to endothelial dysfunction and activation of inflam-
matory and pro-fibrotic pathways [9, 10]. These processes 
interact with one another in a pathological feed-forward 
cycle, ultimately yielding functional and structural kid-
ney abnormalities characteristic of diabetic kidney disease 
(DKD) (Fig. 1). 

Persistent hyperglycaemia induces deleterious changes in 
kidney cellular metabolism and function through a variety 
of mechanisms. Hyperglycaemia differentially affects energy 
metabolism across kidney cell types, for example impeding 
glycolysis in glomerular epithelial cells (where glucose is 
the preferred energy substrate) while enhancing glycolysis 
in proximal tubular epithelial cells (which typically rely on 
fatty acid oxidation) [11]. Changes in glucose metabolism 
culminate in endothelial dysfunction and the activation of 
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downstream inflammatory and pro-fibrotic pathways involv-
ing immune cell recruitment and TGF-β1 production. These 
changes are also accompanied by mitochondrial dysfunction, 
impaired autophagy and oxidative stress. Additionally, non-
enzymatic binding of glucose to circulating proteins results 
in generation of AGEs. AGEs cause injury by binding to 
AGE-specific receptors and alteration of cellular structures 
and protein metabolism, augmenting inflammation and oxi-
dative stress [12]. 

Haemodynamic factors, RAS overactivation and hyper-
tension are central to CKD development and progression 
in diabetes. Diabetes-associated excess kidney tissue RAS 
activation increases angiotensin II-mediated glomerular 
efferent arteriolar vasoconstriction and glomerular hyper-
filtration, tubular sodium reabsorption, and signalling 
through intracellular pathways, resulting in inflammation 
and oxidative stress [13]. Additionally, angiotensin II con-
tributes to endothelial dysfunction by inducing expression 
of vascular endothelial growth factor and increasing reactive 
oxygen species, which reduce the bioavailability of vasodi-
lators (such as nitrous oxide) responsible for maintaining 
normal glomerular vascular tone [14]. Hyperglycaemia also 
disrupts tubuloglomerular feedback, causing afferent arteri-
olar vasodilation and exacerbating glomerular hyperfiltra-
tion. Excess aldosterone, in addition to increasing tubular 
sodium reabsorption, activates inflammatory and pro-fibrotic 
pathways and promotes vascular remodelling [15]. Elevated 

systemic blood pressure, exacerbated by RAS activation and 
transmitted to the glomerular capillary system in the con-
text of impaired autoregulation, further worsens glomerular 
endothelial injury and dysfunction.

Together, the combined outcomes of these metabolic and 
haemodynamic factors and their downstream inflammatory 
and pro-fibrotic effects result in glomerular and tubular 
injury, amounting to clinical and histopathological disease. 
This manifests as progressively worsening albuminuria 
and eGFR decline, with glomerular mesangial expansion, 
podocyte effacement, segmental glomerulosclerosis and 
tubular injury, which progress to diffuse glomerular and 
tubulointerstitial fibrosis [10]. 

Current pharmacological treatment 
landscape

Current management of CKD in type 1 diabetes centres on 
glycaemic control, RAS inhibition and optimisation of risk 
factors including blood pressure, lipids and body weight [1, 
16]. Insulin-based glycaemic control is the pharmacological 
cornerstone in type 1 diabetes and delays the onset and pro-
gression of kidney disease. The benefits of intensive insulin 
therapy for kidney and other microvascular complications, 
cardiovascular outcomes and mortality in adults with type 1 
diabetes were comprehensively demonstrated in the DCCT/

HAEMODYNAMIC DYSREGULATION
• RAS ac�va�on
• Systemic hypertension
• Glomerular hyperfiltra�on
• Increased tubular sodium 

reabsorp�on
• Endothelial dysfunc�on and 

vascular remodelling 

HYPERGLYCAEMIA
• Altered kidney cell-specific 

energy metabolism
• Protein kinase C ac�va�on
• Advanced glyca�on end-product 

forma�on
• Impaired mitochondrial func�on, 

autophagy, oxida�ve stress

INFLAMMATION + FIBROSIS
• Pro-inflammatory cytokine 

produc�on
• Leukocyte recruitment 
• Fibroblast ac�va�on
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KIDNEY DISEASE PROGRESSION IN DIABETES

SGLT2i
GLP1-RAs
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lowering agents
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Non-steroidal MRAs
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Fig. 1  Mechanisms underlying kidney disease progression in diabe-
tes. Processes contributing to kidney disease progression in diabetes 
are summarised in the blue boxes. Pharmacological agents targeting 

these processes are shown in the green boxes. ERA, endothelin recep-
tor antagonist; sGC, soluble guanylate cyclase. This figure is avail-
able as a downl oadab le slide

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06015-1/MediaObjects/125_2023_6015_MOESM1_ESM.pptx
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EDIC study [17]. In DCCT, participants were randomised 
to either intensive or conventional insulin therapy (achiev-
ing a median  HbA1c level of 7% vs 9% [53 vs 75 mmol/
mol], respectively) and followed for a mean of 6.5 years. 
In the observational follow-up study EDIC, all participants 
were encouraged to attempt intensive glycaemic control and 
were followed for >15 years. Intensive therapy resulted in 
a reduced risk of albuminuria and eGFR decline, extending 
beyond the randomisation period, indicating the importance 
of early glycaemic control in preventing long-term adverse 
kidney outcomes [18].

RAS inhibition using an ACE inhibitor or an ARB is rec-
ommended for adults with type 1 diabetes and albuminuria, 
with numerous placebo-controlled trials demonstrating a 
reduced risk of albuminuria progression and eGFR decline 
independent of blood pressure-lowering effects [19, 20]. 
Overall, in adults with type 1 diabetes and CKD, RAS inhi-
bition reduces the risks of progression of microalbuminuria 
to macroalbuminuria by approximately 50% and of serum 
creatinine doubling by 20–30% [21]. However, RAS inhibi-
tion has not yet been found to prevent kidney disease among 
those with type 1 diabetes, normal blood pressure and with-
out albuminuria, and also does not prevent the progression 
of histological changes associated with DKD at the early 
stage of disease [22].

Hypertension is highly prevalent in individuals with CKD 
and contributes to disease progression. Blood pressure man-
agement is important for reducing the risk of kidney disease 
and CVD in type 1 diabetes, with 2023 ADA guidelines 
recommending a target goal of <130/80 mmHg [16]. Hyper-
lipidaemia treatment and weight loss are additionally part of 
foundational type 1 diabetes care.

While glycaemic control, RAS inhibition and risk factor 
management have significantly improved outcomes among 
people with type 1 diabetes and CKD, this population 
remains at substantial elevated risk for adverse kidney and 
cardiovascular events. In the aforementioned RAS inhibition 
trials, 20–40% of participants randomised to ACE inhibi-
tors or ARBs still experienced the primary kidney endpoint 
[19, 20]. More recently, in the PERL trial of adults with 
type 1 diabetes and CKD, iohexol-based GFR declined by  
~3 ml/min per 1.73  m2 per year, despite 90% of participants 
using RAS inhibitors [23]. Treatment strategies for type 1 
diabetes and CKD have remained largely unchanged over the 
last 30 years, with RAS inhibitors introduced in 1993. There 
is therefore a critical need for the development and imple-
mentation of novel therapies that not only address residual 
kidney and cardiovascular risk in this population but also 
target metabolic, haemodynamic, inflammatory and pro-
fibrotic processes that contribute to kidney disease onset and 
progression. Concurrently, more sensitive screening meth-
ods and biomarkers for DKD are warranted, considering 

the limitations of albuminuria and eGFR in detecting early 
disease.

Pharmacological advancements in type 2 
diabetes and CKD and translation to type 1 
diabetes and CKD

Over the last decade, sodium–glucose cotransporter-2 inhibi-
tors (SGLT2i), glucagon-like peptide 1 receptor agonists 
(GLP1-RAs) and non-steroidal mineralocorticoid receptor 
antagonists (MRAs) have emerged as potent kidney- and/
or cardioprotective agents in type 2 diabetes. The consist-
ent substantial kidney and cardiovascular benefits of these 
agents has led to their incorporation into professional guide-
lines as foundational care for the management of CKD in 
type 2 diabetes [1, 24]. Furthermore, introduction of these 
agents into clinical practice has been accompanied by a 
shift in the focus of diabetes care from a ‘glucose-centric’ 
to a ‘cardiorenal risk-centric’ approach. However, SGLT2i, 
GLP1-RAs and non-steroidal MRAs have yet to be inte-
grated into standard type 1 diabetes practice because of their 
limited availability or absence of clinical trial data in this 
population. In the following sections we discuss the potential 
for translation of SGLT2i, GLPA1-RAs and MRAs to people 
living with type 1 diabetes and CKD (Table 1, Fig. 1).

Sodium–glucose cotransporter‑2 inhibitors SGLT2i block 
kidney proximal tubular sodium–glucose cotransport and 
were initially used as glucose-lowering agents. SGLT2i have 
consistently demonstrated kidney and cardiovascular ben-
efits in people with type 2 diabetes across numerous large 
randomised placebo-controlled clinical trials evaluating pri-
mary kidney and cardiovascular clinical outcomes [25]. The 
dedicated kidney outcomes trials include the CREDENCE 
trial, conducted in adults with type 2 diabetes and CKD, 
and the DAPA-CKD and EMPA-KIDNEY trials, conducted 
in adults with CKD and including people with and without 
type 2 diabetes [26–28]. In each of these studies, SGLT2i 
were associated with a ~30–40% reduction in the risk of 
eGFR decline, progression to ESKD or death due to kidney 
or CVD.

The mechanisms by which SGLT2i exert their kidney-
protective effects are multifactorial, related to their meta-
bolic, haemodynamic and anti-inflammatory effects [29]. 
In addition to improving glycaemic control and inducing 
weight loss, SGLT2i may ameliorate hyperglycaemia-related 
kidney cell-specific changes in energy metabolism, thereby 
modulating mitochondrial function and autophagy [29]. 
SGLT2i also have prominent haemodynamic effects, normal-
ising tubuloglomerular feedback and reducing glomerular 
hyperfiltration by increasing distal tubular sodium delivery. 
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In inducing natriuresis, SGLT2i improve blood pressure. 
Furthermore, SGLT2i have been demonstrated to reduce 
kidney tissue hypoxia and inflammation in experimental 
models and in humans [30, 31]. The very similar benefits 
seen in people with CKD with or without diabetes suggests 
that the effect on hyperglycaemia is of minor importance for 
the kidney benefit [32].

In type 1 diabetes, SGLT2i have principally been inves-
tigated as glucose-lowering therapies used in conjunction 
with insulin (Table 1). The EASE, DEPICT and inTandem 
(studying the SGLT1 and 2 inhibitor sotagliflozin) trial pro-
grammes each consisted of a series of randomised placebo-
controlled trials assessing the effects of SGLT2i on  HbA1c 
levels in adults with type 1 diabetes over 24–52 weeks’ 
follow-up [33–36]. SGLT2i use was consistently associated 
with improvements in  HbA1c, as well as with reductions in 
total daily insulin dose, weight and blood pressure. Moreo-
ver, SGLT2i did not increase hypoglycaemia risk; rather, 
these agents reduced participant-reported symptomatic 
hypoglycaemic events, particularly nocturnal episodes [35].

While no RCTs have examined the effects of SGLT2i on 
primary kidney outcomes in type 1 diabetes, post hoc analy-
ses of the EASE, DEPICT and inTandem trial programmes 
have yielded findings suggesting similar physiological 
effects in people with type 1 diabetes as in those with type 
2 diabetes or with non-diabetic CKD. In pooled analyses 
from each of these three type 1 diabetes trial programmes, 
among people with a UACR >3 mg/mmol at baseline, 
SGLT2i resulted in a reduction in UACR of as much as 30% 
over 52 weeks’ follow-up [37–39]. Additionally, these stud-
ies noted an acute ‘dip’ in eGFR with SGLT2i, suggesting a 
therapeutic reduction in glomerular hypertension. Further-
more, increases in haematocrit and uric acid-lowering effects 
were observed, which is relevant because these biochemical 
alterations are closely linked statistically as ‘mediators’ of 
clinical benefits of SGLT2i in kidney and cardiovascular 
outcome trials [40, 41]. These concordant effects on media-
tors of cardiorenal benefits support the hypothesis that physi-
ological mechanisms of cardiorenal protection may also be 
pertinent in individuals with type 1 diabetes treated with 
SGLT2i. In line with this hypothesis, an observational study 
of 200 adults with type 1 diabetes demonstrated improve-
ments in albuminuria and in eGFR with SGLT2i use over 12 
months among adults with a baseline eGFR <90 ml/min per 
1.73  m2 [42]. In another post hoc analysis of the inTandem 
trials using predictive modelling, sotagliflozin was reported 
to reduce the estimated risk of CVD and ESKD [43].

Despite apparent kidney and cardiovascular benefits, 
associations between SGLT2i and increased risk of dia-
betic ketoacidosis (DKA) have limited the implementation 
of this drug class in type 1 diabetes. A meta-analysis of 
18 RCTs including >7000 participants identified a 2.8-
fold greater risk of DKA with SGLT2i use compared with 

placebo in adults with type 1 diabetes [44]. Notably, DKA 
risk increased with higher SGLT2i doses and was modified 
by various factors including BMI and insulin resistance. 
Specifically, SGLT2 inhibition tends to be associated with 
euglycaemic DKA, which is more difficult to detect in the 
absence of regular ketone monitoring. More widespread use 
of SGLT2i in type 1 diabetes will necessitate implementa-
tion of strategies to assess and mitigate DKA risk, includ-
ing preventative measures, patient education and continuous 
ketone monitoring, as well as a better understanding of the 
potential benefits for clinical cardiorenal outcomes, espe-
cially in high-risk populations such as people with CKD 
(Table 2)  [46, 47].

Glucagon‑like peptide 1 receptor agonists GLP1-RAs pro-
mote glucose-dependent insulin secretion and decrease 
glucagon secretion, providing glycaemic benefits. With 
respect to non-glycaemic outcomes, GLP1-RAs promote 
weight loss and have been investigated in randomised pla-
cebo-controlled trials focusing on cardiovascular outcomes 
in adults with type 2 diabetes and high cardiovascular risk. 
In these trials, GLP1-RAs have consistently demonstrated 
benefits for both primary cardiovascular and secondary kid-
ney outcomes. Specifically, a meta-analysis of the ELIXA, 
LEADER, SUSTAIN-6, EXSCEL, REWIND and AMPLI-
TUDE-O trials in type 2 diabetes estimated a 21% reduction 
in the risk of new-onset macroalbuminuria, eGFR decline, 
progression to ESKD or death attributable to kidney causes 
with GLP1-RAs compared with placebo [48]. Kidney ben-
efits may be even greater among those with CKD at baseline 
[49]. The ongoing FLOW trial (NCT03819153) will be the 
first large multinational randomised placebo-controlled trial 
to primarily investigate the effects of a GLP1-RA, once-
weekly subcutaneous semaglutide, on major kidney out-
comes in adults with type 2 diabetes and CKD [50].

The kidney-protective effects of GLP1-RAs are believed 
to result from reductions in inflammation and oxidative 
stress, in part through direct binding to glucagon-like pep-
tide 1 (GLP1) receptors present on kidney glomerular and 
tubular cells [51]. A study conducted using a rat model 
of type 1 diabetes demonstrated reduced inflammatory 
cell infiltration and decreased glomerular expression of 
inflammatory markers, including TGF-β1 and intercellu-
lar adhesion molecule-1, with administration of exendin-4 
[51]. Notably, reduced inflammation was accompanied by 
decreased glomerular hypertrophy, mesangial expansion and 
type IV collagen deposition. In another study using a rat 
model of diabetes, GLP1-RAs reduced markers of oxidative 
stress in the kidney and ameliorated AGE-induced injury 
[52]. Furthermore, GLP1-RAs are effective at inducing body 
weight loss and improving insulin sensitivity, which may 
have kidney and cardiovascular benefits in type 1 diabetes.
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In type 1 diabetes, studies of GLP1-RAs as an adjunctive 
therapy to insulin have focused on glycaemic control and 
body weight reduction (Table 1). The ADJUNCT ONE and 
ADJUNCT TWO trials together randomised >2000 adults 
with type 1 diabetes to once-daily subcutaneous injections 
of liraglutide compared with placebo in addition to insu-
lin for 26 and 52 weeks, respectively [53, 54]. Overall, 
the ADJUNCT programme demonstrated dose-dependent 
improvements in  HbA1c, a decrease in the daily insulin dose 
and a reduction in body weight with liraglutide compared 
with placebo. A meta-analysis of five randomised placebo-
controlled trials of liraglutide in type 1 diabetes validated 
these findings and additionally demonstrated no associa-
tion of liraglutide with severe hypoglycaemia or DKA [55]. 
Among the GLP1-RA agents, once-weekly semaglutide may 
be especially promising in type 1 diabetes, as this agent has 
demonstrated superiority over other GLP1-RAs in terms of 
glycaemic control and weight loss in type 2 diabetes, as well 
as good tolerability [56]. The effects of semaglutide on kid-
ney oxygenation, albuminuria and eGFR will be assessed in 
people with type 1 diabetes as part of the REMODEL-T1D 
mechanistic trial (NCT05822609).

With the results of the FLOW trial anticipated next year, 
as well as high rates of obesity and CVD in type 1 diabe-
tes, there remains an unmet need for additional mechanis-
tic and CVD/kidney outcome studies of GLP1-RAs in the 

population with type 1 diabetes and CKD [50]. Interest in 
this area similarly applies to dual GLP1 and glucose-depend-
ent insulinotropic polypeptide (GIP) receptor agonists such 
as tirzepatide, which have profound effects on glycaemic 
control and body weight (e.g. 11 kg body weight reduc-
tion in the SURPASS-4 trial), preserve the eGFR slope and 
reduce the UACR [57, 58]. Concurrently, triple GIP, GLP1 
and glucagon receptor agonists such as retatrutide are around 
the corner, which have impressive effects on glycaemic con-
trol, obesity and fatty liver disease [59, 60].

Mineralocorticoid receptor antagonists MRAs act by pre-
venting aldosterone binding to mineralocorticoid receptors. 
The steroidal MRAs spironolactone (first generation) and 
eplerenone (second generation) were the first to enter clini-
cal practice and act as potassium-sparing diuretics with 
potent antihypertensive effects. Reductions in morbidity 
and mortality with steroidal MRA use among individuals 
with HF with reduced ejection fraction have led to these 
agents being included as cornerstones of medical therapy 
for HF [61].

Kidney effects of steroidal MRAs have primarily been 
investigated in type 2 diabetes and CKD, although several 
small crossover studies have been performed in adults with 
type 1 diabetes and CKD, where use of spironolactone 
resulted in a 30–60% reduction in albuminuria compared 

Table 2  Strategies to mitigate risk of DKA with SGLT2i use in people with type 1 diabetes

Adapted with permission from Liu et al [46]

Intervention Details

Appropriate patient selection Select patients with no history of reoccurring DKA, normal blood ketone levels (<0.6 mmol/l), low DKA risk 
factors, good adherence to treatment plans and good lifestyle/behavioural factors [45]. Current label indica-
tions in Europe and Japan call for selection of patients with a BMI ≥27 kg/m2 and a total daily insulin dose 
of at least 0.5 U  kg–1  day–1

Enhanced patient education All patients should be well informed about treatment protocols, DKA risk factors and sick day management
Patients should work together with healthcare providers to optimise insulin doses and create a consistent and 

healthy diet to minimise risk of DKA
Lower dose of SGLT2i Lower doses of SGLT2i may still be effective while also decreasing risk of DKA [35]

Initiate SGLT2 inhibitors at lower doses and titrate up in those with a good response
Limited insulin dose reductions Reduce basal and prandial insulin after initiation of SGLT2 inhibition by 10–20% in patients with good gly-

caemic control to mitigate risk of hypoglycaemia
Lower or no reductions in insulin may be required for patients with less intensive glycaemic control
Too high a reduction in insulin may lead to DKA

Close follow-up Adjust insulin doses accordingly with close follow-up by healthcare provider based on blood glucose and 
ketone monitoring

Glucose monitoring Frequent manual glucose monitoring or continuous glucose monitoring should be carried out to enable quick 
readjustment of insulin dose if required

Ketone monitoring Self-testing of β-hydroxybutyrate levels with a blood ketone meter should be carried out routinely, as eugly-
caemic DKA cannot be detected by glucose monitoring alone. Unlike ketone monitoring in type 1 diabetes 
populations without SGLT2i use, among SGLT2i users, ketone levels should be tested in the event of symp-
toms of DKA regardless of the level of blood glucose

Urine ketone testing can be used if necessary but this only measures acetoacetate and not β-hydroxybutyrate 
and will be an estimation of average concentrations since the last void

In future clinical practice, continuous ketone monitoring will play a role in the surveillance of ketogenesis and 
DKA
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with placebo (Table 1) [62–65]. In a meta-analysis of 16 
RCTs of adults with diabetes and CKD (four of which 
included people with type 1 diabetes), spironolactone 
added to standard therapy was associated with a reduction in  
24 h urinary albumin/protein excretion [66]. However, 
assessment of long-term, hard clinical kidney endpoints has 
been limited by the three- to fivefold higher risk of hyper-
kalaemia with spironolactone use [66]. For this reason, ste-
roidal MRA use is discouraged in severe CKD.

Over the last few years, novel non-steroidal MRAs such 
as finerenone have been developed that demonstrate greater 
mineralocorticoid receptor selectivity and other pharma-
cokinetic differences compared with steroidal MRAs [67]. 
In safety and tolerability studies conducted in adults with 
CKD, finerenone was associated with lowering of albumi-
nuria compared with placebo, and a reduced risk of hyper-
kalaemia compared with spironolactone [68]. Subsequently, 
in the large randomised placebo-controlled FIDELIO-DKD 
trial including adults with type 2 diabetes and CKD, finer-
enone reduced the risk of the primary kidney outcome 
(a composite of kidney failure, sustained eGFR decline 
≥40% or kidney death) by ~20% [69]. While hyperkalae-
mia occurred more frequently with finerenone than with 
placebo, this was often mild or moderate and resulted in few 
drug discontinuations (2.3% vs 0.9%, respectively), despite 
study participants also being on maximum-tolerated RAS 
inhibitor therapy. Additionally, finerenone demonstrated 
significant cardiovascular benefits in adults with type 2 dia-
betes and CKD, evaluated in the FIGARO-DKD trial [70]. 
Notably, kidney and cardiovascular benefits of finerenone 
were apparent even in combination with SGLT2i and GLP1-
RA use in secondary analyses of the FIDELIO-DKD and 
FIGARO-DKD trials [71, 72]. The ongoing CONFIDENCE 
trial (NCT05254002) is an international randomised con-
trolled double-blind trial that will directly assess the effects 
of finerenone plus empagliflozin on albuminuria and char-
acterise the efficacy and safety of this drug combination in 
the setting of type 2 diabetes.

Finerenone’s kidney-protective effects likely stem from 
suppression of inflammatory and pro-fibrotic pathways [73]. 
Compared with steroidal MRAs, non-steroidal MRAs exert 
stronger anti-inflammatory and anti-fibrotic effects, probably 
related to their distinct effects on tissue-specific gene activa-
tion [67]. In animal models finerenone reduced the expres-
sion of genes encoding monocyte chemoattractant protein-1, 
matrix metalloproteinase-2 and plasminogen activator 
inhibitor-1 (related to tissue remodelling and fibrosis) in 
the kidney, and additionally demonstrated beneficial immu-
nomodulatory effects [73]. While non-steroidal MRAs have 
not yet been investigated in type 1 diabetes, based on their 
observed benefits in type 2 diabetes and their mechanism 
of action, similar kidney-protective effects are anticipated, 
emphasising the need for dedicated studies with finerenone 

in people with type 1 diabetes and CKD, including their use 
in combination with other ‘repurposed’ therapies such as 
SGLT2i and GLP1-RAs.

Potential future treatments for CKD in type 1 
diabetes

Beyond the classes of medication discussed above, addi-
tional pharmacological treatments are being investigated for 
use in DKD that may be suitable for use in type 1 diabetes.

Endothelin receptor antagonists (ERAs) have been studied 
in diabetes and CKD for over a decade, with early studies 
ending prematurely because of complications associated with 
fluid retention. Newer ERAs have since been designed that 
preferentially target endothelin A receptors, associated with 
inflammation and podocytopathy, over endothelin B recep-
tors, associated with vasodilation and natriuresis [74]. The 
largest trial of ERAs, SONAR, including 2648 participants 
with type 2 diabetes and proteinuric CKD, demonstrated that 
atrasentan on top of RAS inhibition significantly lowered the 
risk of a doubling of serum creatinine or ESKD compared 
with placebo by 35% [75]. Since then, more potent endothe-
lin A-specific ERAs have been under development for use in 
CKD. The combination of these agents with SGLT2 inhibi-
tion is particularly interesting considering the natriuresis and 
protection against HF outcomes associated with SGLT2i [76]. 
Specifically, a study of zibotentan, a highly selective endothe-
lin A ERA, in combination with dapagliflozin in participants 
with type 2 diabetes (NCT05570305) is currently underway, 
with similar phase 2 trials in type 1 diabetes being proposed.

Another potential novel therapeutic option for the treat-
ment of CKD in diabetes is the use of soluble guanylate 
cyclase (sGC) activators. sGC is an enzyme that catalyses 
the formation of cGMP after nitric oxide (NO) binding [77]. 
Reduced NO bioavailability and associated impairments in 
NO–sGC–cGMP signalling have been associated with CKD 
onset and progression in diabetes. Preclinical models have 
suggested that stimulation of sGC in diabetes can increase 
cGMP formation, with resultant improvements in kidney 
inflammation/fibrosis, glomerular permeability and kidney 
blood flow [78]. In a Phase II study of 156 individuals with 
type 2 diabetes and UACR >22.6 and <565 mg/mmol, the 
sGC stimulator praliciguat demonstrated a non-statistically 
significant placebo-adjusted decrease in UACR of 15%, 
accompanied by reductions in blood pressure [79]. Other sGC 
stimulators and activators are currently in development for the 
treatment of CKD (NCT04507061, NCT04750577), with at 
least one study including participants with type 1 diabetes.

Targeting inflammatory pathways, specifically the NLR 
family pyrin domain containing 3 (NLRP3)/IL-1β/IL6/C-
reactive protein (CRP) pathway, has emerged as another 
strategy for improving cardiorenal outcomes in high-risk 
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populations. This was emphasised in the CANTOS trial, in 
which a monoclonal antibody targeting IL-1β in individuals 
with established atherosclerotic CVD and evidence of sys-
temic inflammation reduced the risk of major adverse car-
diovascular events (MACE) by 15–17%, an effect that was 
likely to be mediated by reductions in serum CRP concentra-
tions [80, 81]. A similar effect size was also observed in a 
substudy of participants with eGFR <60 ml/min per 1.73  m2 
[82]. The Phase II RESCUE trial subsequently evaluated tar-
geting the more downstream IL-6 with ziltivekimab in partici-
pants with CKD and elevated high-sensitivity CRP (hsCRP) 
[83]. Compared with placebo, ziltivekimab reduced hsCRP 
concentrations by up to 92%, prompting the formal cardio-
vascular outcome trial, ZEUS (NCT05021835). ZEUS will 
enrol 6200 participants with stage 3 or 4 CKD and elevated 
hsCRP levels, with a primary MACE outcome and second-
ary kidney endpoints including kidney disease progression, 
UACR reductions and eGFR slope. ZEUS will also include 
participants with type 1 diabetes. Additional trials are also 
underway in participants with type 1 diabetes targeting diverse 
pathways including oxidative stress, using nicotinamide ade-
nine dinucleotide phosphate oxidase (Nox)-1/4 inhibitors, and 
the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, 
using bardoxolone (NCT03366337, NCT03550443) [84, 85].

Considering the mechanistic overlap in the development and 
progression of CKD in type 1 and type 2 diabetes, there exists 
a strong rationale for simultaneously developing novel CKD 
therapies for use in both type 1 diabetes and type 2 diabetes and 
studying the repurposing of existing type 2 diabetes CKD thera-
pies for the treatment of CKD in people with type 1 diabetes.

Conclusion

With the completion of several cardiovascular and kidney 
outcome trials involving an increasing number of thera-
peutic agents, tremendous progress has been made in the 
management of individuals with type 2 diabetes and CKD. 
Regrettably, people with type 1 diabetes have not been able 
to benefit from this expanded armamentarium of therapeutic 
agents and remain at unacceptably high risk of kidney and 
cardiovascular complications. The translation of these and 
other novel therapies under development into the clinical 
care of individuals with type 1 diabetes with established 
complications requires a concerted demonstration of efficacy 
and safety in dedicated and properly designed cardiorenal 
outcome trials.

Supplementary Information The online version contains a slide 
of the figure for download available at https:// doi. org/ 10. 1007/ 
s00125- 023- 06015-1.
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