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Abstract
Insulin exerts its actions not only on peripheral organs but is also transported into the brain where it performs distinct 
functions in various brain regions. This review highlights recent advancements in our understanding of insulin’s actions 
within the brain, with a specific emphasis on investigations in humans. It summarises current knowledge on the transport of 
insulin into the brain. Subsequently, it showcases robust evidence demonstrating the existence and physiological consequences 
of brain insulin action, while also introducing the presence of brain insulin resistance in humans. This pathophysiological 
condition goes along with an impaired acute modulation of peripheral metabolism in response to brain insulin action, 
particularly in the postprandial state. Furthermore, brain insulin resistance has been associated with long-term adiposity 
and an unfavourable adipose tissue distribution, thus implicating it in the pathogenesis of subgroups of obesity and (pre)
diabetes that are characterised by distinct patterns of body fat distribution. Encouragingly, emerging evidence suggests that 
brain insulin resistance could represent a treatable entity, thereby opening up novel therapeutic avenues to improve systemic 
metabolism and enhance brain functions, including cognition. The review closes with an outlook towards prospective research 
directions aimed at further elucidating the clinical implications of brain insulin resistance. It emphasises the critical need to 
establish feasible diagnostic measures and effective therapeutic interventions.

Keywords  Brain · Diabetes · Insulin · Insulin resistance · Obesity · Prediabetes · Review

Abbreviations
BBB	� Blood–brain barrier
CSF	� Cerebrospinal fluid
FDG	� Fluorodeoxyglucose
fMRI	� Functional MRI
MEG	� Magnetoencephalography
PET	� Positron emission tomography
SGLT2	� Sodium–glucose cotransporter 2

Historical background: the discovery 
of brain insulin action and its contribution 
to systemic metabolism

The discovery of the brain’s role in whole-body metabolism 
goes back to the work of the French physiologist Claude 
Bernard in the mid-19th century. He discovered that punc-
turing the floor of the fourth ventricle in rabbits triggered 
glucosuria and resulted in the animals’ rapid demise, lead-
ing him to conclude that manipulating the brain can cause 
diabetes.

This foundational work was complemented by the dis-
covery of insulin in 1921 and the subsequent discovery that 
it crosses the blood–brain barrier (BBB) in dogs [1]. The 
implications of this finding remained elusive, as insulin does 
not stimulate glucose uptake in neurons. Seminal works by 
Roth and colleagues in the mid-20th century demonstrated 
the presence of insulin receptors throughout the brain [2]. 
This finding prompted numerous experiments that revealed 
a complex interplay between the brain and systemic metabo-
lism. The groundbreaking work of Woods and colleagues 
emphasised the pivotal role of brain insulin action, revealing 
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that direct administration of insulin into the brain attenu-
ated food intake and reduced body weight in a number of 
species, including baboons [3–5]. In line, brain-specific 
insulin-receptor knockout in rodents increased food intake 
and body weight, and induced systemic insulin resistance 
as well as hypertriglyceridaemia [6]. Another breakthrough 
was the discovery that brain insulin could modulate glucose 
metabolism via its influence on hepatic glucose production 
[7], presumably via the parasympathetic nervous system [8].

Subsequently, numerous studies characterised how brain 
insulin modulates whole-body glucose and lipid metabolism, 
and how it regulates appetite, energy expenditure and body 
weight. Through this scientific journey, brain insulin was dis-
covered to impact multiple further brain functions such as 
cognition, memory and synaptic plasticity. This review mainly 
focuses on the role of brain insulin in human metabolism.

Transport of insulin into the human brain

The BBB is a selective, semi-permeable barrier around the 
microvasculature in the brain. It plays a crucial role in brain 
health by strictly controlling molecular passage between 
the bloodstream and the brain [9, 10]. The primary (but 
likely not the only) mechanism enabling insulin to enter the 
brain is receptor-mediated transcytosis [9–11] (i.e. binding 
to insulin receptors on the BBB and then moving across 
endothelial cells into the brain’s extracellular space [9, 10, 
12]). In certain specialised brain regions, such as the arcuate 
nucleus of the hypothalamus, the BBB appears to be less 
dense [10]. Here, tanycytes, a cell type also expressing the 
insulin receptor [13], are required for insulin uptake [14].

Similar to animals [1], insulin is present in the 
cerebrospinal fluid (CSF) of humans [15]. This compartment 
is accessible for investigations of transport processes into 
the brain. Presence of insulin in the human CSF indicates 
that the hormone is transported from the bloodstream into 
the central nervous system. However, findings are still 
controversial as to whether tiny amounts of insulin may also 
be produced locally [16].

Insulin transport is not equally effective in all individuals. 
There appear to be a number of situations that either facili-
tate or hinder this transport, ultimately influencing insulin 
availability within the brain: insulin penetration into the 
CSF is lower in individuals with obesity [17, 18]. Further-
more, alterations in blood glucose levels acutely modulate 
the transport of peptide hormones, including insulin, into 
the CSF [18]. Thus, alterations in the transportation pro-
cess across the BBB that requires the insulin receptor could 
account for the observed variations in insulin transport into 
the human CSF. In line, diminished transportation efficiency 
has been identified in individuals who present with systemic 
insulin resistance [19].

Ageing is also linked to a reduction in insulin transport into 
the CSF [20]. This decline may contribute to compromised 
brain insulin action, predisposing individuals to age-related 
cognitive dysfunction and neurodegenerative diseases [21]. 
This is supported by reduced CSF insulin concentrations in 
individuals with Alzheimer’s disease in some [22–24] but not 
all studies [24]. Yet, the precise underlying mechanisms gov-
erning the regulation of insulin transport into the human brain 
remain under investigation [11].

Evidence for brain insulin action 
and the existence of brain insulin resistance 
in humans

Evidence for brain insulin action  Just as in animals, insulin 
receptors are expressed in the human brain in neurons and 
other cell types (e.g. astrocytes) [12, 25, 26], teleologically 
arguing for a role of insulin in the brain.

Various techniques are used to stimulate brain insulin 
action in clinical research. The most physiological way is to 
measure the response to endogenous insulin that is released 
in response to food intake. However, numerous additional 
postprandial factors [27] hinder the dissection of insulin’s 
specific effects from other effects. A more selective approach 
is the i.v. infusion of insulin during hyperinsulinaemic–
euglycaemic glucose clamps. However, this technique also 
cannot differentiate between peripheral and brain effects. 
One approach frequently used in clinical research to 
overcome this challenge is the administration of insulin by 
nasal spray [28]. This route delivers a substantial amount of 
insulin to the brain [29], while only small amounts enter the 
bloodstream [30, 31]. The quantity of insulin absorbed into 
the bloodstream is not sufficient to induce hypoglycaemia 
[30–32] and likely does not significantly contribute to the 
induced brain effects [31, 32]. Nevertheless, this insulin 
spillover must be taken into account when studying the 
potential impact of brain insulin on peripheral metabolism.

Modern neuroimaging techniques, such as functional 
MRI (fMRI), positron emission tomography (PET) and mag-
netoencephalography (MEG), have facilitated investigations 
into the effects of insulin on brain functions. MEG measures 
magnetic fields produced by the brain’s electrical activity. 
Early studies employing MEG demonstrated insulin’s impact 
on neuronal activity [33] and linked brain insulin effects to 
body weight [33, 34], metabolic factors [35] and genetic 
factors [36–38]. PET allows the assessment of metabolic 
processes, and most studies investigating insulin’s effects 
on the brain have employed the tracer fluorodeoxyglucose 
(FDG) to measure brain glucose uptake under insulin stimu-
lation [39]. One study utilised the tracer raclopride to assess 
insulin’s effects on dopamine receptor availability [40].
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Most studies on insulin action in the human brain have 
employed fMRI. In contrast to MEG, it provides higher 
spatial resolution for not only cortical but also subcorti-
cal regions. MRI enables detailed imaging of the brain’s 
anatomical structure and fMRI can also quantify functional 
aspects. With this technique, insulin-induced changes in 
regional brain activity and brain networks were detected 
[41]. Insulin-responsive networks and regions include areas 
critical for energy metabolism, eating behaviour, reward 
processes, mood and cognitive functions [25, 31, 41]. A 
recent systematic review of 58 RCTs using fMRI reported 
significant insulin effects in the inferior and middle frontal 
gyri, the dorsal striatum, the insula and the hypothalamus 
[31]. Further effects were reported in subcortical areas, 
including the hippocampus, in some but not all studies [31]. 
The insulin-responsive frontal gyri are part of the prefron-
tal cortex, which is involved in various high-level cognitive 
functions, including decision making and inhibitory control 
[31, 41, 42]. The dorsal striatum plays a crucial role in the 
brain’s reward system [40, 41, 43]. Its complex responses to 
insulin appear to contribute to the brain-derived modulation 
of peripheral insulin sensitivity [40, 44]. Notably, insulin 
modulates the tone of the principal neurotransmitter dopa-
mine within this specific region of the human brain [40]. The 
insula is implicated in a wide range of functions [45] and 
plays a significant role in regulating the body’s homeostasis. 
Moreover, it is involved in the perception of bodily states, 
such as hunger and fullness [45], making it also essential 
for eating behaviour [31, 41]. The hypothalamus consists of 
various nuclei, some of which are critical for whole-body 
energy homeostasis, eating behaviour and body weight [46].

Hence, combining fMRI with nasal administration of insu-
lin to assess insulin responses in regional cerebral blood flow 
in these areas could be a reliable and robust approach [31, 47] 
for quantifying brain insulin sensitivity in future trials.

Brain insulin resistance in humans  Using the techniques 
described above, it has become clear that insulin affects 
human brain activity. However, there is a substantial num-
ber of people with reduced or even absent brain response 
to insulin, a state termed ‘brain insulin resistance’ [25, 31, 
48]. This condition is most commonly associated with over-
weight and obesity [25]. Additionally, further factors are 
also linked to brain insulin resistance, including normal age-
ing [41, 49, 50], circulating levels of NEFA [35] and differ-
ent common genetic polymorphisms [36–38, 51, 52], most 
of which were discovered due to their association with body 
weight. Though, the direct role of these factors in causing 
brain insulin resistance is still under research.

Furthermore, recent neuroimaging data suggest sex 
differences in brain responses to insulin [47, 53]. In young 
women, insulin sensitivity of the hypothalamus appears to be 
rapidly modulated across the menstrual cycle with relative 

insulin resistance in the luteal phase [47]. However, not 
all studies on insulin action in the human brain report sex 
differences and the potential underlying mechanisms remain 
largely unexplored.

Further evidence for the effects of insulin in the human 
brain comes from functional studies, where nasal administra-
tion of insulin improved memory, altered eating behaviour and 
affected mood, at least in certain populations. These functions 
have been reviewed in greater detail elsewhere [28, 31]. In line 
with findings from neuroimaging studies, there are data sug-
gesting sex differences in the effects of acute intranasal insulin 
delivery on eating behaviour and memory functions [28].

Effects of brain insulin action on peripheral 
metabolism

The first reports on genetic manipulation of brain insulin 
action in rodents suggested profound effects on peripheral 
metabolism [6]. Subsequent research in humans indicated 
that brain insulin action has a similar impact on the periph-
ery, at least in individuals who are healthy and lean [25]. 
However, the precise mechanisms of signal transduction and 
regulation at the cellular level are still largely unexplored in 
humans.

A variety of clinical trials explored the metabolic effects 
of either nasal administration of insulin to the brain [44, 
54–58] (for an overview see also electronic supplementary 
material [ESM] Tables  1, 2) or the pharmacological 
inhibition of brain insulin action [59, 60]. These studies 
indicated that brain insulin action has the potential to 
improve peripheral insulin sensitivity [44, 54, 55, 58, 59]. In 
most studies, this enhancement started approximately 45 min 
after nasal administration of insulin and was observed for 
at least 3 h [44, 55]. This outcome seems to involve several 
key mechanisms.

Brain insulin action suppresses endogenous glucose 
production [44, 56, 59], although the precise mechanisms 
and relative contribution is still under investigation (for 
review see, e.g. [61, 62]). In humans, this function seems 
only to occur under systemic hyperinsulinaemia but not 
at fasting insulin levels [63, 64]. Therefore, brain insulin 
might not directly inhibit hepatic glucose production, 
but rather enhance hepatic insulin sensitivity. This 
would facilitate the suppression of endogenous glucose 
production after meals when circulating insulin levels 
are high and insulin signalling in the brain occurs. In 
addition, brain insulin also acutely enhances liver energy 
metabolism and reduces liver fat content [64], presumably 
by promoting hepatic VLDL export (for review see, e.g. 
[65]). However, chronic intranasal insulin treatment did 
not change liver fat content but instead enhanced the 
liver’s secretion of branched-chain amino acids [57].
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The impact of brain insulin action on human lipolysis 
is still not fully clear. While early studies suggested a 
suppressive effect [66], later trials that tightly controlled 
circulating insulin found no impact [64, 67, 68]. Considering 
the potent lipolysis-suppressing effect of even small increases 
in circulating insulin, it seems unlikely that brain-derived 
signals could substantially influence postprandial lipolysis 
under physiological circumstances with concurrently elevated 
insulin in both the circulation and the brain. Furthermore, 
brain insulin action appears to stimulate peripheral glucose 
uptake [44], thereby also contributing to improved peripheral 
insulin sensitivity (possible underlying mechanisms reviewed, 
e.g. in [61]).

Besides these effects on glucose handling, brain insulin 
acutely enhances glucose-stimulated insulin secretion from 
the pancreas [69]. Of note, this effect is exclusive for the 
second phase of insulin secretion and is closely linked to 
intact hypothalamic insulin sensitivity [69]. Mechanisms are 
likely similar to those underlying cephalic insulin responses 
[70, 71] and will therefore rely on the dense innervation of 
pancreatic islets [72]. While insulin resistance in the hypo-
thalamus seems to hinder the acute stimulation of pancreatic 
insulin release, it was found to be paradoxically associated 
with insulin hypersecretion in response to oral glucose load 
in a cross-sectional study [73]. One possible explanation 
could be a long-term impairment of pancreatic inputs from 
the brain, as occurs in states of obesity and hypothalamic 
insulin resistance, which disrupts the balance of inputs to the 
beta cell. This imbalance could lead to an overabundance of 
stimulatory non-neuronal signals that promote insulin hyper-
secretion. Indeed, this has been observed in individuals with 
hypothalamic lesions [74] and may also occur in those with 
hypothalamic insulin resistance.

Possible impact of brain insulin resistance  Importantly, all 
these observations on the regulation of whole-body metabo-
lism by brain insulin were made solely in lean individuals. 
These effects are diminished or absent in people who are 
overweight or obese or who have brain insulin resistance 
or type 2 diabetes (as reported for brain insulin effects on 
peripheral insulin sensitivity [44, 55], endogenous glucose 
production [44, 75], peripheral glucose uptake [44], liver 
energy metabolism [64], liver fat content [64] and pancreatic 
insulin secretion [69]). It is still unclear whether obesity 
itself or the often associated whole-body insulin resistance is 
responsible, as there are no studies on brain insulin action in 
individuals who are obese but still insulin sensitive. Longitu-
dinal studies are needed to determine the sequence of devel-
opment between peripheral and brain insulin resistance.

Potential (patho)physiological role of brain insulin in 
whole‑body metabolism  Based on the above-described find-
ings, we suggest a model for brain insulin’s role in peripheral 

glucose metabolism [25] (summarised in Fig.  1). Food 
intake triggers pancreatic insulin release, which crosses the 
BBB and reaches the brain. Here, it acts on specific neurons 
(e.g. in the hypothalamus). This triggers brain-derived sig-
nals to metabolic organs in the periphery, enhancing liver 
insulin sensitivity and boosting pancreatic insulin secre-
tion into the portal vein, further stimulating hepatic insulin 
action. These processes together contribute to an effective 
suppression of hepatic glucose production. At the same time, 
brain-derived signals promote glucose uptake into peripheral 
tissues. Altogether, this ensures proper synchronisation of 
energy handling in various metabolic organs in the periphery 
in the postprandial state (Fig. 2).

Signals from the brain to metabolic organs in the periph‑
ery  Brain-to-periphery signals are likely transmitted 
through the autonomic nervous system [25, 70, 72, 76]. In 
line, brain insulin action appears to promote a transition 
from sympathetic to parasympathetic dominance [32, 55, 
77] that suppresses endogenous glucose production and 
stimulates pancreatic insulin secretion [78]. Further signal-
ling pathways may exist, potentially involving circulating 
factors, although traditional endocrine systems (e.g. hypo-
thalamic–pituitary–adrenal axis) appear unaffected by the 
acute effects of brain insulin [32, 40, 54, 79].

In brain insulin resistance, the brain’s acute modulation of 
peripheral metabolism seems to be disrupted [25], possibly 
leading to impaired or absent brain-derived coordination of 
postprandial energy distribution in the body.

The relative contribution of brain-derived modulation to 
human postprandial glucose metabolism, compared with 
direct effects on peripheral organs, remains an intriguing 
question. The observations that nasal administration of 
insulin reduces the need for endogenous insulin post-meal 
[58] and that long-term nasal administration of lower-dose 
insulin decreases glucose fluctuations [80], suggest a sig-
nificant role for brain insulin action in physiological glucose 
regulation. However, the reduced glucose excursions in the 
later study did not translate into reduced HbA1c levels [81]. 
Thus, it is still uncertain whether, and to what extent, disrup-
tions in brain insulin circuits contribute to abnormal glucose 
metabolism (e.g. in type 2 diabetes).

Long‑term consequences of brain insulin 
resistance in humans

The majority of data on the potential impact of brain insulin 
resistance comes from cross-sectional analyses that suggest 
connections to visceral obesity and metabolic diseases [25], 
as well as neurological and psychiatric disorders. These 
include neurodegeneration, Alzheimer’s disease, Parkinson’s 
disease and depression (reviewed in greater detail in [48, 82, 



Diabetologia	

Insufficient coordination of postprandial energy fluxes
Insulin 
hypersecretion?

Unfavourable 
body fat

distribution?

Suppression of
endogenous 

glucose production

Stimulation of
glucose uptake

Stimulation of 
second phase 
insulin secretion

Coordination of postprandial energy fluxes

Insulin

Insulin

a

b

Stimulatory
non-neuronal

signals

Stimulatory
non-neuronal

signals

Fig. 1   Putative model of brain insulin’s role in peripheral metabolism 
and the impact of brain insulin resistance. (a) Presumed situation in 
people with an insulin-sensitive brain. Upon food intake, insulin is 
released from the pancreas into the bloodstream. It reaches the brain, 
passes the BBB in a receptor-mediated process and activates special-
ised neurons (e.g. in the hypothalamus). This introduces signals to the 
pancreas that propagate second-phase insulin secretion. More insu-
lin is released into the portal vein and acts as a strong suppressor of 
hepatic glucose production. Endogenous glucose production is further 
suppressed by direct signals from the brain to the liver. This mecha-
nism likely contributes to the adequate suppression of hepatic glucose 
output after food intake and all-together coordinates energy fluxes 
throughout the organism. (b) Presumed situation in people affected 
by brain insulin resistance. In this scenario, insulin cannot properly 

pass the BBB and cannot properly activate specialised neurons in the 
brain. Signals towards the periphery are compromised. Hence, there 
is no acute stimulation of pancreatic insulin secretion through brain-
derived signals. Of note, chronic lack of these regulatory signals 
could contribute to insulin hypersecretion due to an overabundance 
of stimulatory non-neuronal signals. Furthermore, in brain insulin 
resistance, signals towards the liver and other metabolic organs are 
lacking. Altogether, this could contribute to an impaired suppression 
of hepatic glucose output in the postprandial state and to an impaired 
brain-derived modulation of whole-body energy fluxes. Over time, 
this could facilitate an unfavourable body fat distribution with vis-
ceral obesity, a key phenotype of high-risk subgroups of diabetes and 
prediabetes. This figure is available as part of a downl​oadab​le slide​set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-024-06104-9/MediaObjects/125_2024_6104_MOESM2_ESM.pptx
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83]). However, the predictive power of these associations is 
restricted due to a limited number of longitudinal studies.

In line with findings from cross-sectional studies [84–86], 
brain insulin sensitivity is longitudinally associated with 
future body weight and body fat distribution [86–88]. 
Intriguingly, brain insulin sensitivity before a 24 month 
lifestyle intervention programme aiming to prevent type 2 
diabetes predicted the programme’s effectiveness [86, 87]. 
Participants with brain insulin resistance struggled to lose 
weight or reduce their visceral fat, whereas those with good 
brain insulin responsiveness achieved substantial benefits. 
Long-term follow-up data collected 9 years afterwards 
indicated a lasting impact on body weight and body fat 
distribution, with unfavourable courses in those with brain 
insulin resistance [86]. Similarly, a recent trial found that 
brain insulin responsiveness predicted weight loss success 
in response to a 3 month caloric restriction in overweight, 
metabolically healthy adults [88].

Recent research in people at increased risk for type 2 diabetes 
based on detailed phenotyping has identified six unique clusters 
(i.e. six distinct groups of people with similar phenotypic charac-
teristics) [89, 90]. Three clusters have a heightened risk of devel-
oping diabetes and varying risks of nephropathy, CVD and all-
cause mortality, independent of blood glucose. Of note, the risk 
of complications is only partially connected to diabetes risk [89]. 
While the mechanisms driving these high-risk phenotypes remain 
largely unexplored, it is noteworthy that the phenotype of individu-
als at high risk for complications closely resembles that seen in 
individuals with brain insulin resistance. Therefore, brain insulin 
resistance may potentially be a critical factor in the pathogenesis of 

a phenotype with a high risk for complications of prediabetes and 
diabetes, a hypothesis that needs to be tested in upcoming studies.

To my knowledge, no dedicated longitudinal studies have 
been conducted that explore the impact of brain insulin resist-
ance on cognitive function and mood. Nevertheless, numer-
ous studies have investigated the impact of whole-body insulin 
resistance, which often overlaps with brain insulin resistance. 
These suggest predictive links between insulin resistance and 
accelerated cognitive decline [91], Alzheimer’s disease [21, 
48], Parkinson’s disease [48, 82] and depression [92–94]. It is 
still being investigated whether insulin resistance is the patho-
mechanism or whether a common element like a proinflamma-
tory state induces both insulin resistance and brain diseases.

Treatment of brain insulin resistance

Given the far-reaching implications on cognitive, neurologi-
cal and metabolic health, brain insulin resistance is a com-
pelling target for therapeutic intervention. However, human 
studies are scarce.

Two recent clinical trials that quantified brain responses 
to nasal insulin by fMRI demonstrated that brain insulin 
resistance appears to be a treatable condition. The first 
trial included young individuals who were overweight 
or obese. Despite no significant weight loss, an 8 week 
exercise intervention improved insulin responsiveness 
in the dorsal striatum (putamen) to a level similar to that 
seen in lean individuals [95]. The second trial evaluated 
pharmacological treatment with the sodium–glucose 

Liver Muscle Adipocytes

Endocrine

pancreas

Fig. 2   Overview of brain insulin action derived effects on periph-
eral metabolism. In response to food intake, insulin is released into 
the bloodstream. After passing the BBB, insulin reaches the brain 
where it acts in specialised areas, including the hypothalamus, fron-
tal areas, insula and the dorsal striatum. This induces signals towards 

the periphery to suppress hepatic glucose production, to enhance 
peripheral glucose uptake into tissues (e.g. skeletal muscle and adi-
pose tissue) and to propagate second-phase insulin secretion from 
the pancreas. These functions appear to be disturbed in brain insulin 
resistance. This figure is available as part of a downl​oadab​le slide​set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-024-06104-9/MediaObjects/125_2024_6104_MOESM2_ESM.pptx
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cotransporter 2 (SGLT2) inhibitor empaglif lozin in 
individuals with prediabetes who were overweight or obese 
[96]. Irrespective of weight loss, SGLT2 inhibition over 8 
weeks restored hypothalamic insulin sensitivity. Of note, 
mediation analyses indicated that this improvement in 
hypothalamic insulin responsiveness appears to drive the 
reduction of liver fat content and enhancement of fasting 
blood glucose levels that were also achieved with this 
SGLT2 inhibitor treatment [96].

In line with these findings, brain effects have been 
reported for dapagliflozin, another SGLT2 inhibitor [97]. 
While this study was focused on food-cue reactivity and 
did not test brain insulin responsiveness, it appears likely 
that empagliflozin and dapagliflozin have comparable 
effects [98]. While SGLT2 is expressed in the brain [99], 
it is unclear whether these pharmacological inhibitors act 
there directly or indirectly via peripheral action with sub-
sequent projections towards the brain [98, 99].

Thiazolidinediones, a class of insulin-sensitising drugs, 
have not been specifically evaluated for their impact on 
brain insulin responsiveness in humans. Some studies have 
explored their effects on cognitive functions, primarily 
focusing on Alzheimer’s disease, yielding mixed results 
[21, 100]. The latest large RCT with pioglitazone was 
terminated early due to ineffectiveness [101]. Known 
side effects and the lack of cognitive benefits in dementia 
suggest limited potential of this substance class for treating 
brain insulin resistance.

Current large-scale studies are assessing the effects of 
glucose-lowering medications such as SGLT2 inhibitors 
and GLP-1 receptor agonists in neurological diseases, 
and may shed light on new pharmacological treatments 
for brain insulin resistance.

Even after significant weight loss through bariatric 
surgery, insulin’s effects on brain glucose uptake, as 
evaluated using FDG PET-CT, were not brought back to 
what is observed in lean individuals [102]. However, a 
recent study using fMRI with nasal insulin demonstrated 
improved brain insulin responsiveness after a 3 month low-
energy diet [88]. Both imaging approaches likely capture 
different features of brain insulin action, highlighting the 
need for further research to clarify the effects of bariatric 
surgery and weight loss on brain insulin responsiveness.

Although evidence is growing that brain insulin resistance 
is in principle treatable, larger, randomised trials are neces-
sary to confirm this and to clarify its clinical significance.

Future research directions

Even with a mounting body of evidence supporting the clini-
cal significance of insulin action within the human brain, 
many open questions still remain. One of the key challenges 

is understanding the complex communication between the 
brain and peripheral organs. Unravelling the extent to which 
insulin-induced effects in the brain contribute to the regulation 
of whole-body metabolism following food intake, compared 
with the direct effects of insulin on target organs such as the 
liver or adipocytes, will be an intriguing endeavour. Clearly, 
more research in this direction and new non-invasive tools are 
necessary to decipher the mechanisms that underly each cru-
cial step of the pancreas–brain–periphery network.

Another challenge is to uncover the regulatory processes gov-
erning insulin’s transport into the brain, as well as the precise 
mechanisms through which signals originating from the brain 
are conveyed towards target organs. Understanding whether the 
regulation of these mechanisms varies for each target is essential 
for a comprehensive understanding of the system as a whole as 
well as for developing organ-specific interventions.

Insulin signalling in the brain occurs physiologically in 
the postprandial state, a situation during which numerous 
signalling factors undergo dynamic fluctuations (e.g. incretin 
hormones and glucagon [27]). Furthermore, additional 
factors inform the brain about energy availability, including 
leptin. Determining how these factors interact with insulin 
in neurons and other brain cells is a largely unchartered 
territory and needs exploration. This will be of special 
importance as a number of upcoming pharmacotherapies 
specifically address such postprandial signalling pathways.

Further exploration is needed on how impaired 
brain insulin action contributes to high-risk phenotypes 
in prediabetes and diabetes, neurological disorders 
and psychiatric conditions. This could clarify the 
pathophysiological contribution, thereby aiding more 
effective prevention and intervention strategies.

A significant obstacle in assessing brain insulin 
resistance in larger studies and testing the potential role 
in clinical management is the lack of precise biomarkers. 
Current diagnostic procedures, such as fMRI combined 
with nasal administration of insulin, are costly and time-
consuming. Developing easy-to-use, non-invasive tools 
such as biomarkers, digital tools or combinations thereof 
should become a priority. Such advancements could 
simplify diagnoses, enable accurate risk stratification and 
facilitate monitoring of disease progression.

Lastly, refining and optimising therapeutic methods for 
brain insulin resistance could open preventative or ther-
apeutic possibilities not only for obesity and metabolic 
disorders but also for related neurological and psychiatric 
conditions.

In conclusion, exploring the role of brain insulin 
signalling is a thrilling and rapidly evolving research field, 
with implications beyond glucose metabolism. Progress 
in this central area requires a multidisciplinary effort to 
translate research findings into clinical practice and improve 
people’s lives.
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set of the figures for download available at https://​doi.​org/​10.​1007/​
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